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The discipline of aeroacoustics is concerned with the propagation of sound in air. This
is a fluid phenomenon, for the description of which the Navier-Stokes equations (or the
Euler equations in the inviscid case) have been shown to be adequate. Hence the
possibility arises of solving these equations as a predictive tool for determining sound
fields due to particular sources, and also as a tool for the design and control of sources
of sound. The application of computational techniques to the solution of equations
governing aeroacoustic phenomena is known as computational aeroacoustics (CAA).

A special difficulty facing CAA is the fact that the sound levels of interest generally
comprise only a small perturbation on the underlying flow field. For example, rather
noisy environments are characterized by acoustic pressures which are only about 10-5
times the ambient atmospheric pressure [1]. Accordingly, extremely accurate solutions
of the governing equations are needed, so that the sound field is not lost in the error in
computing the whole field.

A particular simplification which occurs in many, but by no means all, aeroacoustic
problems is that Mach numbers are low and there are no shocks. From the numerical
point of view, flows without shocks are more regular than those with shocks, and it is
possible to compute them with greater accuracy than would be the case for shocked
flows, for the same computational effort.

We have been guided by an internal NASA report [2] on special problems which are
considered to distinguish CAA from the discipline of computational fluid dynamics.
The report cited advocates the establishment of research tools to be used in the
discipline of CAA. In the spirit of the report, our effort this summer has focused initially
on critical problems of CAA, solutions of which would be part of a stable of tools at the
disposal of researchers in CAA. The problems we have settled on are listed in Figure
1.

The first problem listed is that of aeroacoustics in the absence of rigid boundaries.
Lighthill [3] gave a formulation of this problem in which he showed that the sources of
the acoustic field were quadrupole in nature. We have preferred a different
formulation of the problem, in which the quadrupoles are sources for a nonlinear wave
equation, as opposed to the linear one used by Lighthill. This is given in Figure 2.
The figure also gives further details of a solution procedure for the Euler equations
appropriate for the aeroacoustic problem and motivated by the analysis of Crow [4]. In
accordance with our formulation, we contend that an algorithm for accurate solutions
of an inhomogeneous nonlinear wave equation is of prime importance.
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distinguish two types of flows: those immersed in a stream with upstream and
downstream boundaries, and those which are not. A flow of the latter type would be
flow in a shock tube, whereas pipe flows and jet flows would be of the former type. For
pipe and jet flows the proper choice of upstream and downstream boundary conditions
has not always been clear-cut [5). Now there is a theory for inviscid incompressible
flows which treats the prescription of boundary conditions as a control problem [6,7].
We consider the numerical implementation of boundary conditions in accordance with
this theory to be a high-priority item for CAA, and also the extension of the theory to
viscous and compressible subsonic flows is considered to be important.

A third problem would be computation of the interference and diffraction of sound
waves. In this case one needs very precise information about the phases of the
waves. A capability in this area would enable one to design devices to reduce noise
by canceling out sound waves.

Further problems listed in Figure 1 are the scattéring of sound waves and the control of
noise.

The subsequent effort of the summer has focused on algorithms to solve the problems
just described, beginning with the first one, aeroacoustics in free space. To date this
has been the only one of the problems which has received special attention during the
reporting period. Figures 3, 4, and 5 describe technical aspects of the numerical
treatment proposed for an inhomogeneous nonlinear wave equation in the acoustic
regime. Figure 3 describes a time discretization ("semigroup” formulation) of the
problem; Figure 4 discusses the solution of the time-discretized equations by means of
a further spatial discretization; and Figure 5 shows how the time-discretized equations
can be given an integral formulation, in a manner close to the treatment of the linear
wave equation.
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2. Boundary effects: numerical implementation of control theory for inviscid
incompressible flows; extension of theory to viscous and subsonic flows.

3. Diffraction of sound waves: accurate phase calculations.
4. Scattering of sound waves.

5. Control of noise.

Figure 1. Critical Problems of Computational Aeroacoustics.
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Write u =V + V¢,whereV -V = 0. Vs a functional of
o=Vxu: V=F {0}

To update V, update o from
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Let hy be given by
VZh=V-(ux0)=-u-Vxo

Then ¢ is updated by solving
1
¢t+5u2+h—h, =0,
where

h=h(p) = d—pégz

Figure 2. Solution Procedure in Free Space
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Rewrite as:

p+V-q=0
q,+Vp=F
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Figure 3. Treatment of Nonlinear Wave Equation
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G monotone nonlinear, can solve G(§) = g easily. Iterative solution:

G(g(i)) - g(g(i-ﬂ)

~n+1
g(l)_T__;”_) P

Figure 4. Solution of equations.
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Inserting into equation at top of Figure 4, we get new
2y _ 2 (0
3 E(g)‘E(g( ))

) e

G is monotone and nonlinear
Iterative solution of equations:

é(g(i)) = g(g(“)) |

(i) ~n+1
§ —=f

Formulation is close to Huyghens' construction in linear case g—g =C

Figure 5. Integral Representation of V2f.
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